skip to main content


Search for: All records

Creators/Authors contains: "Carey, Sean"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We report the analysis of microlensing event OGLE-2017-BLG-1038, observed by the Optical Gravitational Lensing Experiment, Korean Microlensing Telescope Network, and Spitzer telescopes. The event is caused by a giant source star in the Galactic Bulge passing over a large resonant binary-lens caustic. The availability of space-based data allows the full set of physical parameters to be calculated. However, there exists an eightfold degeneracy in the parallax measurement. The four best solutions correspond to very-low-mass binaries near ( M 1 = 170 − 50 + 40 M J and M 2 = 110 − 30 + 20 M J ), or well below ( M 1 = 22.5 − 0.4 + 0.7 M J and M 2 = 13.3 − 0.3 + 0.4 M J ) the boundary between stars and brown dwarfs. A conventional analysis, with scaled uncertainties for Spitzer data, implies a very-low-mass brown-dwarf binary lens at a distance of 2 kpc. Compensating for systematic Spitzer errors using a Gaussian process model suggests that a higher mass M-dwarf binary at 6 kpc is equally likely. A Bayesian comparison based on a galactic model favors the larger-mass solutions. We demonstrate how this degeneracy can be resolved within the next 10 years through infrared adaptive-optics imaging with a 40 m class telescope. 
    more » « less
  2. ABSTRACT We report the discovery and analysis of a planet in the microlensing event OGLE-2018-BLG-0799. The planetary signal was observed by several ground-based telescopes, and the planet-host mass ratio is q = (2.65 ± 0.16) × 10−3. The ground-based observations yield a constraint on the angular Einstein radius θE, and the microlensing parallax vector $\boldsymbol{{\pi} }_{\rm E}$, is strongly constrained by the Spitzer data. However, the 2019 Spitzer baseline data reveal systematics in the Spitzer photometry, so there is ambiguity in the magnitude of the parallax. In our preferred interpretation, a full Bayesian analysis using a Galactic model indicates that the planetary system is composed of an $M_{\rm planet} = 0.26_{-0.11}^{+0.22}M_{\rm J}$ planet orbiting an $M_{\rm host} = 0.093_{-0.038}^{+0.082}~\mathrm{M}_{\odot }$, at a distance of $D_{\rm L} = 3.71_{-1.70}^{+3.24}$ kpc. An alternate interpretation of the data shifts the localization of the minima along the arc-shaped microlens parallax constraints. This, in turn, yields a more massive host with median mass of $0.13 {\, \mathrm{M}_{\odot }}$ at a distance of 6.3 kpc. This analysis demonstrates the robustness of the osculating circles formalism, but shows that further investigation is needed to assess how systematics affect the specific localization of the microlens parallax vector and, consequently, the inferred physical parameters. 
    more » « less
  3. Abstract OGLE-2016-BLG-1093 is a planetary microlensing event that is part of the statistical Spitzer microlens parallax sample. The precise measurement of the microlens parallax effect for this event, combined with the measurement of finite-source effects, leads to a direct measurement of the lens masses and system distance, M host =0.38–0.57 M ⊙ and m p = 0.59–0.87 M Jup , and the system is located at the Galactic bulge ( D L ∼ 8.1 kpc). Because this was a high-magnification event, we are also able to empirically show that the “cheap-space parallax” concept produces well-constrained (and consistent) results for ∣ π E ∣. This demonstrates that this concept can be extended to many two-body lenses. Finally, we briefly explore systematics in the Spitzer light curve in this event and show that their potential impact is strongly mitigated by the color constraint. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. Abstract

    We have collected transit times for the TRAPPIST-1 system with the Spitzer Space Telescope over four years. We add to these ground-based, HST, and K2 transit-time measurements, and revisit anN-body dynamical analysis of the seven-planet system using our complete set of times from which we refine the mass ratios of the planets to the star. We next carry out a photodynamical analysis of the Spitzer light curves to derive the density of the host star and the planet densities. We find that all seven planets’ densities may be described with a single rocky mass–radius relation which is depleted in iron relative to Earth, with Fe 21 wt% versus 32 wt% for Earth, and otherwise Earth-like in composition. Alternatively, the planets may have an Earth-like composition but enhanced in light elements, such as a surface water layer or a core-free structure with oxidized iron in the mantle. We measure planet masses to a precision of 3%–5%, equivalent to a radial-velocity (RV) precision of 2.5 cm s−1, or two orders of magnitude more precise than current RV capabilities. We find the eccentricities of the planets are very small, the orbits are extremely coplanar, and the system is stable on 10 Myr timescales. We find evidence of infrequent timing outliers, which we cannot explain with an eighth planet; we instead account for the outliers using a robust likelihood function. We forecast JWST timing observations and speculate on possible implications of the planet densities for the formation, migration, and evolution of the planet system.

     
    more » « less
  8. null (Ed.)
  9. null (Ed.)